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Businesses and governments must
often assess and manage risk in
areas where there is little or no direct
historical data to draw upon, or
where relevant data is difficult to
identify.  For example, the Barings
Bank collapse in 1995 was not due
to credit or market risk, where banks
have sufficient data for prediction
and mitigation of risk, but rather it
was due to what is now called
operational risk – the results of
failures in everyday operational
processes.  The challenges are
similarly acute when the source of
the risk is novel: terrorist attacks,
ecological disasters, major project
failures, and more general failures of
novel systems, market-places and
business models.

Even though we may have little or no
historical data, there is often an
abundance of expert (but subjective)
judgement, as well as diverse
information and data on indirectly
related risks.  

These are the types of situation that
can be successfully addressed using
Bayesian Networks (BNs), even
when classical, data-driven
approaches to risk assessment are
not possible.  BNs describe “webs”
of causes and effects, using a
graphical framework that provides
for the rigorous quantification of
risks and the clear communication of
results.  They can combine historical
data with expert judgement.

During the last decade, researchers
have incorporated BN techniques
into easy-to-use toolsets, which in
turn have enabled the development
of decision support systems in a
diverse set of application domains,
including medical diagnosis, safety
assessment, forensics, procurement,
equipment fault diagnosis and
software quality.  Further technology
and tool advancements since 2000
mean that end-users, rather than just
researchers, are now able to develop
and deploy their own BN-based

solutions.  As a result, BN methods
are beginning to penetrate
mainstream business practice.
Recent commercial case studies
provide evidence of impressive
returns on investment from these
techniques. 

Both the practice and research of
BNs are mushrooming.  This report
provides a snapshot of this dynamic
and exciting area, including an
introduction to the underpinning
ideas, recent case studies, emerging
areas of application, current research
challenges, and a summary of the
key players.
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Basic definitions

A Bayesian Network (BN) is a way of
describing the relationships between
causes and effects, and is made up
of nodes and arcs, as shown in
Figure 1.  The collection of nodes
and arcs is referred to as the graph
or topology of the BN.  In addition, in
a BN each node has an associated
probability table, called the Node
Probability Table (NPT).

The nodes represent variables. To
ensure the example is as simple as
possible we assume, in Figure 1, that
all the nodes are discrete, having the
two possible states “true” and
“false” (in real-world examples a
node such as “Norman late” could
be continuous on a scale of zero to

infinity representing the number of
minutes late). The arcs in a BN
represent causal or influential
relationships between variables. 
Thus, a train strike can cause and/or
influence both Martin and Norman to
be late; Martin oversleeping can also
cause or influence Martin to be late. 

The key feature of BNs is that they
enable us to model and reason
about uncertainty. In our example, a
train strike does not imply that
Norman will definitely be late (he
might leave early and drive), but
there is an increased probability that
he will be late. This information is
captured in the NPT for the node
“Norman late” as shown in Figure 2. 
The NPT for any node gives the
conditional probability of each

possible outcome given each
combination of outcomes for its
parent nodes. In this case the node
“Norman late” has one parent node,
“Train strike”. 

What the NPT tells us is that:
The probability Norman is late
given that there is a train strike is
0.8; 
The probability Norman is not late
given that there is a train strike is
0.2; 
The probability Norman is late
given that there is not a train strike
is 0.1; 
The probability Norman is not late
given that there is not a train strike
is 0.9.

Martin 
oversleeps Train strike

Martin 
late

Norman 
late

Figure 1: Simple Bayesian Network (BN)

Norman Late
0.9

0.1

0.2

0.8

Train Strike

False

True

False True

Figure 2: NPT for “Norman Late”

Bayesian Networks: Background and Development
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The NPT for “Martin late”, as given
by Figure 3, is more complicated
since this node has two parents and
so the number of combinations of
parent states is four rather than two. 

On the other hand, the NPTs for the
nodes “Train strike” and “Martin
oversleeps” (Figure 4) are both very
simple; since these nodes have no
parent nodes in this model (we call
such nodes root nodes), we only
have to assign a probability to each
of the two possible values “true” and
“false”.

Usually, there are several ways of
determining the probabilities in any
of the tables. For example, for the
NPT for “Train strike” we might be
able to base the probabilities on
previously observed frequencies of
days when there were train strikes.
Alternatively, if no such statistical
data is available we may have to rely
on subjective probabilities entered
by experts. A key feature of BNs is
that we are able to accommodate
both subjective probabilities and
probabilities based on objective
data.

Calculations in a BN

Having entered the probabilities we
can now use Bayesian probability to
do various types of analysis.
Bayesian probability is all about
revising probabilities in the light of
actual observations of events.
Suppose, for example, we find out
that Norman is late. Then, intuitively,
we feel that the probability of a train
strike must have increased from its
prior value of 0.1. But by how much?
Bayes’ Theorem provides the answer
as shown in Box 1. In this case the
revised belief (called the posterior) is
just under 0.5.  Box 1 also shows
how we use this information to revise
our belief that Martin is late; in this
case the prior probability of 0.446
increases to 0.542 once we know
Norman is late. In practice (as we
shall see later) there is no need for
anybody to be concerned with the
laborious calculations such as those
in Box 1, since these are all done
automatically in any BN tool. 

The advantage of BNs
over alternative
techniques

When we enter evidence and use it
to update the probabilities in this
way we call it propagation. In theory
we can enter any number of
observations anywhere in the BN
and use propagation to update the
marginal probabilities of all the
unobserved variables. This can yield
some exceptionally powerful
analyses that are simply not possible
using other types of reasoning and
classical statistical analysis methods.
For example, without showing the
computational steps involved, if we
first enter the observation that Martin
is late we get the revised
probabilities shown in Figure 5.

Martin Late
0.7

0.3

0.4

0.6

Train Strike

False

True

False True

0.4

0.6

0.2

0.8

False True

Martin oversleeps False True

Figure 3: NPT for “Martin late”

NPT for “Train strike”

0.9

0.1

False

True

NPT for “Martin oversleeps”

0.6

0.4

False

True

Figure 4: NPTs for the root nodes
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Box 1: Bayes’ Theorem and Propagation
Suppose that T represents the statement “Train strike”, and N represents “Norman late”. We start with a prior probability of T,
which we write as P(T), but we are interested in knowing what is the (posterior) probability of T given the evidence N.  We write
this as P(T|N). Bayes’ Theorem is the following formula, due to the 18th century mathematician, the Reverend Thomas Bayes, for
calculating P(T|N):

Now, we know from the NPTs that P(N|T) = 0.8 and that P(T) = 0.1. So the numerator in Bayes’ Theorem is 0.08. The
denominator, P(N), is the so-called marginal (or unconditional) probability that Norman is late – it is the probability that Norman
is late when we do not know any specific information about the events (in this case the train strike) that influence it. The NPTs do
not provide this value directly, but they do provide it indirectly by virtue of the equation

Hence, substituting this value of P(N) in Bayes’ Theorem we get  P(T|N) = 0.08/0.17 = 0.471. 
Thus, the observation that Norman is late significantly increases the probability that there is a train strike (up from 0.1 to 0.471).
What we would like to do is to use this information to revise our belief that Martin is late. This is where doing things manually
starts to get a little arduous even for such a simple example as this. “Martin late” is conditioned on two events rather than just
one.  Introducing O to represent “Martin oversleeps”, the original marginal probability of Martin being late is

But we know the revised marginal P(T) = 0.471 and hence P(not T) = 0.529. Using these values in the equation above yields the
revised marginal P(M) = 0.542. Thus, the observation that Norman is late has also increased the probability that Martin is late. 

Martin oversleeps

0.0

0.08
0.16
0.24
0.32
0.4

0.48
0.56

False True

Train strike

0.0

0.2

0.4

0.6

0.8

False True

Martin late

0.0

0.2

0.4

0.6

0.8

1.0

False True

Norman late

0.0

0.16

0.32

0.48

0.64

False True

Figure 5: Revised probabilities for “Martin late”

P(N) = P(N|T)P(T) + P(N|not T)P(not T)
= 0.8(0.1) + 0.1(0.9)
= 0.17.

P(M) = P(M|T, O)P(T)P(O)
+P(M|T, not O)P(T)P(not O)
+P(M|not T, O)P(not T)P(O)
+P(M|not T, not O)P(not T)P(not O)

= 0.032 + 0.036 + 0.216 + 0.162 
= 0.446.

P(N|T)P(T)
P(N)

P(T|N) = .
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The most likely explanation for
Martin’s lateness is Martin
oversleeping – the revised probability
of a Train strike is still low. However,
if we now discover that Norman is
also late (Figure 6) then “Train strike”
(rather than Martin oversleeping)
becomes the most likely explanation
for Martin being late. This particular
type of (backward) inference is called
explaining away. 

Classical statistics alone does not
enable this type of reasoning and
“what-if” analysis. 

In fact, as even this simple example
shows, BNs offer the following
benefits:

• Explicitly model causal factors: It is
important to understand that this
key benefit is in stark contrast to
classical statistics whereby
prediction models are normally
developed by purely data-driven
approaches. For example,
regression models are a standard
method, in which historical data
alone are used to produce
equations relating dependent and
independent variables. Such
approaches not only fail to
incorporate expert judgement in
scenarios where there is
insufficient data, but also fail to
accommodate causal explanations.
In a study [18] to predict software
defects found in testing, the

regression-based model was
unable to predict the logical
certainty that no testing would
yield no defects. This is because
there was insufficient data for such
scenarios. But a causal model can
predict this with perfect accuracy.
Similarly, regression models cannot
accommodate the impact of future
process changes. In short,
regression models are often good
for describing the past, but poor
for predicting the future.  

• Reason from effect to cause and
vice versa: A BN will update the
probability distributions for every
unknown variable whenever an
observation is entered into any
node. So entering an observation
in an “effect” node will result in
back propagation, i.e. revised
probability distributions for the
“cause” nodes and vice versa.
Such backward reasoning of
uncertainty is not possible in other
approaches.

• Overturn previous beliefs in the
light of new evidence: The notion
of explaining away evidence is one
example of this.

• Make predictions with incomplete
data: There is no need to enter
observations about all the “inputs”,
as is expected in most traditional
modelling techniques. The model
produces revised probability

distributions for all the unknown
variables when any new
observations (as few or as many as
you have) are entered.  If no
observation is entered then the
model simply assumes the prior
distribution.

• Combine diverse types of evidence
including both subjective beliefs
and objective data. A BN is
“agnostic” about the type of data
in any variable and about the way
the NPTs are defined.

• Arrive at decisions based on visible
auditable reasoning: Unlike black-
box modelling techniques
(including classical regression
models and neural networks) there
are no “hidden” variables and the
inference mechanism is based on a
long-established theorem (Bayes).

This range of benefits, together with
the explicit quantification of
uncertainty and ability to
communicate arguments easily and
effectively, makes BNs a powerful
solution for all types of risk
assessment. As we shall see in the
next section, the availability of
excellent tool support for BNs also
makes them a practical solution
compared with alternatives such as
fuzzy logic [53] and Shafer-Dempster
Theory [46].

Martin oversleeps

0.0

0.08
0.16
0.24
0.32
0.4

0.48

False True

Train strike

False True

Martin late

0.0

0.2

0.4

0.6

0.8

1.0

False True

Norman late

0.0

0.2

0.4

0.6

0.8

1.0

False True

0.0

0.08
0.16
0.24
0.32
0.4

0.48

0.56

Figure 6: “Norman late” explains away Martin being late
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Figure 7: Simple flood model – a single iteration

Box 2: Dynamic BNs

Consider the simple BN flood model in Figure 7. The model is attempting to predict the probability of a flood given
information about rainfall, water level and flood defences. 

The problem is that this model is a “one time” solution. Suppose, for example, we enter information about rainfall – this will
give us a revised probability distribution for both “Flood” and “Post Water Level”. This is very useful, but it is static. Suppose
we are monitoring the situation at fixed time intervals.  Then we want to be able to use the revised probability distribution for
“Post Water Level” to replace the distribution for the “Prior Water Level” in the next time interval. In other words, we want to
be able to use the same BN structure over and over again, but with the prior NPTs changed. This notion of “iteration” can
only be implemented in (static) BNs by replicating the BN structure as many times as there are iterations and by linking
appropriate input and output nodes. This is generally not practical for real-world problems because it leads to large,
unmanageable and computationally inefficient models. Consequently, researchers have introduced the notion of Dynamic BNs
(DBNs) [36] to extend BNs to take account of this type of temporal behaviour, and have developed algorithms that do the
necessary propagation on the compact (rather than expanded) models. Work on DBNs is ongoing and some partial tool
implementations are now available, such as in GeNie & SMILE and Netica. One approach uses the Object-Oriented BN
solution (as in Figure 8 from AgenaRisk) whereby it is sufficient to link separate instances of the BN objects as opposed to
copies of the full BN in each iteration. In this way there is only one object (with many instances of it) and the computational
and storage overheads are therefore minimised.

River Flooding T1

Flood Defences

Prior Water Level

Flood Defences

Post Water Level

River Flooding T2

Flood Defences

Prior Water Level

Flood Defences

Post Water Level

River Flooding T3

Flood Defences

Prior Water Level

Flood Defences

Post Water Level

Figure 8: Flood model - multiple iterations

Prior Water LevelRain

Input node, can
take an input from
a previous
instance of the
flooding network

Post Water LevelFlood Defences

Flood?

Ouput node, can send
the water level to later
instances of the
flooding model

Ouput node,
can send the

flood defences
quality to later

instances of
the flooding

model
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Key BN developments
Even in very simple BNs like the
examples above the calculations
involved in propagation are very
time-consuming. When there are
many variables and links between,
as in most real-world models, and
where the number of states for each
variable is large this propagation
becomes impossible to do manually.
In fact, no computationally efficient
solution for BN propagation is known
that will work in all cases. This was
the reason why, despite the known
benefits of BNs over other
techniques, there was for many
years little appetite to use BNs to
solve real-world decision and risk
problems. However, a dramatic
breakthrough in the late 1980s
changed things. Researchers such
as Lauritzen and Spiegelhalter [30]
and Pearl [43] published algorithms
that provided efficient propagation
for a large class of BN models.

These algorithms were based on the
idea of message passing in a tree
structure, called the junction tree,
that is derived from the BN. Each
node of the junction tree
corresponds to a group of nodes in
the original BN called a cluster.

Provided these cluster sizes are not
too large the resulting algorithm
works very well. Real-world BN
models of many hundreds of nodes
are more often than not naturally
structured in such a way that the
cluster sizes are small; hence these
propagation algorithms have proven
to work on many real-world
problems. Since the first published
algorithms there have been many
refined versions, including that of
Shenoy-Shafer [47], which uses the
idea of binary fusion to ensure that
the junction tree is binary. In most
cases this leads to faster
computation times. 

The first commercial tool to
implement an efficient propagation
algorithm was developed in 1992 by
Hugin, a Danish company closely
associated with Jensen’s BN
research team at Aalborg University.
The Hugin tool (see Appendix 2) had
a liberating effect; it enabled
researchers who were not specialists
in BNs and statistics to build and run
BN models. Other BN tools quickly
followed, such as Netica, Microsoft’s
MSBNX, and BayesiaLab. 

While these tools enabled large-
scale BNs to be executed efficiently,

they provided little or no support for
users actually to build large-scale
BNs, nor to interact with them easily.
Beyond a graphical interface for
building the topology, BN-builders
were left to struggle with the
problems of handling large graphs
that contained similar, but slightly
different “patterns” of structure and
of filling in the probabilities in many
very large NPTs manually. In both
cases, this could prove to be
exceptionally time-consuming, error-
prone and ultimately demoralising for
the domain experts, in conjunction
with whom the models were built
and upon whom their accuracy
depended. Consider, for example,
the BN fragment shown in Figure 9.
Such fragments are very typical of
those that frequently occur in real-
world models. They are
characterised by the fact that node
values are typically measurable only
on a subjective ranked scale like
{very low, low, medium, high, very
high} and only extremely limited
statistical data (if any) is available to
inform the probabilistic relationship
for Y given X1 and X2. 

X1: Quality of 
Testing Staff

X2: Quality of 
Testing Processes

Y: Test Effectiveness

Figure 9: Typical qualitative BN fragment
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Assuming each of the nodes has five
states (in the many commercial
studies we have been involved with,
the experts are rarely satisfied with
3-point scales), the NPT for the node
Y has 125 states. This is not an
impossible number to elicit
exhaustively, but from extensive
experience we know that all kinds of
inconsistencies arise when experts
attempt to do so. If the number of
states increases to seven (which
experts commonly insist on) and/or
the node Y has additional parents
then exhaustive elicitation becomes
infeasible, especially as real-world
models invariably involve dozens of
fragments like these.

On top of these constraints, none of
the early BN tools was properly able
to handle continuous, as opposed to
discrete, node variables. Hence, until
the late 1990s few commercial
applications of BNs had been built
outside research labs.

The key developments that have
significantly improved the situation in
recent years fall into the following
broad categories:

• Object-Oriented BNs: A theoretical
breakthrough in being able to
scale-up BN-building came with
Koller and Pfeffer’s idea of object-
oriented BNs [26]. Object-oriented
BNs borrow ideas from object-
oriented design and programming
in that they allow complex
problems to be described in terms
of reusable abstract classes of
objects with complex relationships.
Large models can then be
constructed, “building-block
fashion”, from smaller templates or
fragments, with considerable
productivity benefits. The SERENE
project [13] further developed
these ideas to the point whereby
they could be deployed in practice
(in the context of large-scale BNs
for safety cases, where there were
multiple occurrences of similar BN
patterns). In particular, the
techniques in [39] were
subsequently incorporated into
both the BN tools Hugin and
AgenaRisk.

• Efficient NPT elicitation: The
frustration of manually building
large NPTs has been the biggest

factor limiting more widespread
use of BNs. Over the years a
number of techniques have been
introduced that enable large NPTs
to be built with minimal effort for a
range of special cases (see, for
example, [9][28][50][51]). The most
commonly used technique
(especially in medical BNs) is the
Noisy-OR method [22], but this has
the disadvantage that it applies
only to Boolean nodes and
implicitly ignores the interaction
effects between variables. What
was still missing was a general,
easily accessible approach that
could be used directly with domain
experts who are neither expert
probability theorists nor
mathematicians. A solution to the
problem for a large class of NPTs
involving ranked nodes such as in
Figure 9 has recently been
described in [17]. It enables the
entire NPT to be defined in terms
of simple weighted function
expressions. This solution has
been implemented in AgenaRisk
(see Figure 10) and used with great
effect in a number of real systems. 

Figure 10: Defining an NPT for a ranked node using a single expression
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• Learning BNs from data (see, for
example [6][24][37]): Theoretically,
with sufficient data about a set of
potentially related variables it may
be possible to learn both the
qualitative (i.e. the graph structure)
and the quantitative (i.e. the NPTs)
components of a BN.  Structure
learning involves determining the
conditional probability structure
between variables from the
strength of the interrelationships
contained in the data set. Since
there are many possible
explanatory BN structures for any
given data set, structural learning
algorithms use scoring rules to
penalise overly complex models
using the principle of Occam’s
razor.  At its simplest, structural
learning looks at the correlation or
mutual information shared between
one or more variables and discards
weak links between variables
should the correlation fall below
some acceptable threshold. When
BNs are “learned” from data in this
way they can be viewed as one of
many machine learning AI
techniques. However, this has also
caused considerable confusion
and underplays the major strength
of BNs (there is little evidence that
the structural relationships learned
from data alone produce a model
that makes sense from a causal
perspective and structural learning
cannot handle logical or
deterministic relationships between
variables). From this point of view,
it is not surprising that many
people mistakenly regard BNs as
being in direct competition to

Neural Networks. But whereas the
latter always require significant
data for learning accuracy, BNs
can be built by experts with
domain knowledge even when
there is little or no data available –
as is the case in many decision-
making applications.  In a
comparison of models for
predicting football results [25] the
expert-built BN, which had been
built without direct access to the
database of results, significantly
outperformed the BN built from
data alone; but even more
interesting is that it also
outperformed other machine
learning models. 

Notwithstanding these concerns,
there is no doubt that, providing
expert input is also used, learning
BNs from data has great potential.
One of the first commercial
strength tools to implement a BN-
learning algorithm was Bayesware
Discoverer (Appendix 2), while
Hugin and Netica have now added
NPT learning components. A very
powerful and completely free
system is Powersoft, an
implementation of Cheng’s award-
winning BN-learning algorithm [8].
Where there is extensive data
these algorithms and tools can be
very helpful in constructing NPTs
and revising them automatically
without the need for expert input
as the database expands. 

• Dynamic BNs (see Box 2): Whereas
the basic BN is static, in many
real-world problems we want to

model the change in values of
uncertain variables over successive
time intervals. Dynamic BNs
extend classical BN algorithms to
support such modelling and
inference. As such they have much
in common with signal processing
applications, such as Kalman
filters. They have been used for
image tracking, forecasting
financial exchange rates, and
online/offline condition monitoring
and fault diagnosis in systems
control applications. An especially
intriguing recent application is to
mind reading [4][11], where they
model observable head and facial
displays and corresponding hidden
mental states over time. For a
comprehensive overview of
dynamic BNs and a comparison of
competing algorithms, see [36]. 

• Hybrid BNs: Hybrid BNs are BNs
that contain both discrete and
continuous (numeric) nodes. Early
BN tools did not allow numeric
nodes at all. Then, when numeric
nodes were first introduced into
tools like Hugin in 1997 there were
no facilities for defining NPTs as
arithmetic or standard statistical
functions. Fortunately, most current
BN tools now include some kind of
equation editor and predefined
statistical functions that can be
used to define NPTs for numeric
nodes. However, most BN tools are
unable to deal with numeric nodes
accurately and until very recently
this has been a constraint on the
types of problems that can be
solved using BNs.
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The first working applications of BNs
(during the period 1988-1995)
tended to focus on classical
diagnostic problems, primarily in
medicine [21] and fault diagnosis [4].
Indeed, it was an EU-funded project
on diagnosing neuromuscular
diseases that led to the Machine
Intelligence Group at Aalborg
University producing the MUNIN
system [2]; this subsequently led to
the first BN tool, Hugin. Like most of
the medical applications, the MUNIN
BN was wrapped up in a decision
support system for the intended use

of medical professionals. It is difficult
to gauge the extent to which these
systems have actually been used in
practice. The suspicion is that, even
when the natural scepticism by
doctors to any kind of AI techniques
is overcome in individual instances,
the highly conservative nature of the
profession overall has prevented any
widespread take-up. Nevertheless
the medical and biological/DNA
decision-support domain has
continued to be the most fruitful area
for published BN applications; there
have been hundreds of such

publications — the online
bibliography cited in [15] provides
details of many of them.

Whereas the take-up in practice of
medical BNs has been limited, the
take-up in other areas has been
impressive. Companies such as
Microsoft and Hewlett-Packard have
used the early BNs for fault
diagnosis, and in particular printer
fault diagnosis, extensively. Box 3
describes this, and other uses of
BNs, at Microsoft.

Box 3: Use of BNs at Microsoft

In 1996 Bill Gates famously declared

“Microsoft's competitive advantage is its expertise in Bayesian networks.”  (Los Angeles Times, October 28, 1996)

There is no doubt that Microsoft has invested heavily in such expertise over the years, by bringing together some of the leading
researchers in BNs like Eric Horvitz and David Heckerman in the Decision Theory and Adaptive Systems Group. Crucially, in
addition to some significant contributions to core research in BNs this group has ensured that its work has often been
implemented in real systems. One such key area where Microsoft has used BNs is in user-support and automated fault
diagnostics. For example, its printer fault diagnostic system was based on a BN developed by Breese and Heckerman [5]
(although interestingly it was Hewlett-Packard, rather than Microsoft, who subsequently patented a similar BN-based system
[48]). A fragment of a fault diagnosis BN model is shown in Figure 11.

One of the most celebrated, but also most widely
misunderstood, BN applications at Microsoft was
the Office “paperclip”  that has annoyed millions of
MS Word users worldwide. In fact, as Horvitz
reports in The Economist [10], although a BN lies
at the heart of the system for learning the most
likely user actions, the Office team employed a
relatively simple rule-based system on top of the
BN to bring the paperclip agent to the foreground
with a variety of tips. Horvitz states:

“We had been concerned upon hearing this plan
that this system would be distracting to users — and
hoped that future versions of the Office Assistant
would employ our Bayesian approach to guiding
speculative assistance actions — coupled with
designs we had demonstrated for employing non-
modal windows that do not require dismissal when
they are not used.”
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Figure 11: Simplification of Microsoft’s printer fault diagnosis BN [5]

What Can be Done with Bayesian Networks?
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Unlike doctors, pharmaceutical
companies are very keen to exploit
BN models that potentially improve
the efficiency and accuracy of their
costly trials. In 2006 the FDA [12]
announced its willingness to
consider these kinds of Bayesian
techniques in order both to speed up
the approval process and increase
overall safety. Researchers at Boston
[45] have used data on both
successful and unsuccessful drugs
trials to develop a BN model that
could reduce drug development
costs by an estimated $283 million

per approved drug and increase a
drug's profitability by $160 million.
The company Phorecaster
(www.phorecaster.com) is exploiting
these developments. 

The ever-increasing need for
improved decision support in critical
systems — especially for assessing
safety — has also resulted in a range
of BN-based systems being used in
practice. These include BN models
for air traffic management [40],
railway safety assessment [33], and
terrorist threat assessment [29]. The

VISTA system [20] helps users
making high-stakes, time-critical
decisions that involve complex visual
information such as at NASA Mission
Control Center in Houston. More
generally, BNs have become a fairly
standard means of modelling and
tracking in vision applications [52].
There have also been numerous uses
of BNs in military applications. For
example, the TRACS system for
predicting reliability of land vehicles
(see Box 4) is one of many BN-
based systems used routinely by
QinetiQ.

Box 4: The TRACS System (Predicting Military Vehicle Reliability)

Determining which vehicle to choose, from competing tenders, to meet a new Ministry of Defence (MoD) requirement is difficult,
time consuming and error prone. Traditional solutions used by QinetiQ involved a combination of extensive track-testing of
prototypes supplied by competing manufacturers, and modelling based on analysing design specifications and using “sum-of-
parts” reliability predictions. This process was hugely expensive and generally led to unsatisfactory predictions because there was
no means of combining subjective judgements about likely design and manufacturing process quality. In collaboration with Agena
[38], QinetiQ developed a BN-based model to predict vehicle reliability accurately based on information about the architecture
and design process. The model was generated dynamically from a number of BN template models based on the particular
subsystem architecture of a given vehicle specification. For each vehicle, any known information about the subsystem reliability
was used. This was combined with information about the particular manufacturer and their design and manufacturing processes. 
Agena developed a decision-support system around the model, which enables QinetiQ’s engineers to generate solutions for each
new proposed vehicle and enables them to interact with the BN model via a simple questionnaire GUI. For each proposed vehicle,
various types of reliability analyses can be generated, along with all supporting reports, providing a full audit trail of assumptions.

The system, TRACS (Figure 12), saves
QinetiQ time and money because accurate
predictions are achieved without the need
for track testing.  Predictions made by
TRACS are more accurate because they can
combine subjective data about the process
and manufacturer with hard data about
component reliability. Moreover, TRACS
helps identify process improvement
opportunities and hence can lead to
improved reliability and reduced whole life
costs.
Many of the user interface ideas that were
built into TRACS were subsequently
incorporated into the AgenaRisk software;
in particular the questionnaire interface
enables non-programmers to generate
instantly complete applications based
around a BN, whilst exposing as many of
the details as needed.

Figure 12: The TRACS BN-based system for predicting reliability of military vehicles
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High-stakes applications are not
limited to the safety-critical and
military domains. The Basel 2
Banking Accord [3] places a
regulatory requirement on all banks
to provide an auditable quantification
of operational risk. Previously they
had only to provide quantification of
credit and market risk, for which
there are well-established data and
models. In the absence of such data
for operational risk the regulators
proposed using models such as
BNs. Moreover, the incentive to use
such models was a lower capital
charge. A number of such BN

models have been developed (see,
for example, [42][44]) and BN-based
operational risk solutions are known
to have been implemented at a
number of major international banks.
The special challenges involved in
building these kinds of solutions are
discussed further in the next section.

Another high-stakes application
domain where BNs have been used
extensively by commercial
organisations is fault prediction. Box
5 describes some of the extensive
work on software fault prediction.
During 2005-2007 a leading

technology company, known around
the world for innovation and
leadership in wireless and
broadband communications,
implemented an innovative BN-
based solution to the problem of
predicting hardware component
failures in the field. With the
implementation of the resulting
quality control and reliability
prediction system in its network and
infrastructure division, this company
expects to achieve savings of over
$5 million in 2007 alone, including a
30 per cent improvement in warranty
expenditure [1].

Box 5: BNs Provide Radical Improvements for Software Fault Prediction

The developers of any new complex software system will confirm that, no matter how much testing they perform, there will
still be plenty of defects yet to be found. The hope is that, when the software is released, any defects found by end-users will
have minimal impact. Hence, the decision about when to stop testing and release the software must always be balanced by the
likely number (and criticality) of remaining defects. It follows that the ability to produce accurate predictions of “residual”
defects in software systems is one of the most important and challenging tasks confronting software engineers. It is especially
relevant for safety critical software (such as in transport and medical systems where software that is released with too many
defects can have life-threatening impact); but the business of any commercial software producer can be devastated if they get
their release decision wrong.

Since 1999 Philips Consumer Electronics has worked with researchers at Queen Mary, Surrey University, and Agena to
evolve and validate BN models. Philips develop complex software that is embedded in electronic devices like TVs and
DVDs. Being able to improve its decision-making about when to release the software is critical from a business perspective
because faulty software can lead to the recall of entire batches of equipment. Figure 13 shows some BN models used to
predict testing process quality and software product quality.
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The AID tool (described in [16]) was developed specifically for the Philips development environment and produced impressive
results. In a subsequent EU-funded project MODIST [34], involving a number of companies in addition to Philips, a more general
purpose BN solution was developed. This can be easily tailored to handle arbitrary software development processes, as shown in
Figure 14 and hence the approach can be used by organisations whose development processes are very different from those of
Philips.

In 2004-2005 Philips were able to perform a comprehensive validation on 36 major projects based in Bangalore and Eindhoven
[18]. The predictive accuracy of the causal models was outstanding — 93% — much better than could be achieved with
traditional metric-based approaches. But even more important than the predictive accuracy was that the causal models and tools
enabled project managers to do genuine risk assessment and “what-if” analysis that simply was not possible before.

Organisations including General Dynamics, Orange, Motorola, Siemens and Tellabs also now use these models and tools.
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Figure 13: BNs used to predict testing process quality and product quality

Figure 14: Arbitrary life-cycle stages modelled as a series of connected BNs
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Most academic research remains
focused on algorithm refinements
because the general problem of
exact BN propagation seems
computationally intractable. Some of
this work is on general-purpose
algorithms (i.e. improving on the
existing algorithms of Pearl,
Lauritzen and Shenoy-Shafer) and
there are promising results here with
efficiency improvements enabling the
generation and use of larger models
containing thousands of variables.
However, much of this work is
restricted to models containing
discrete variables and so other
researchers are focused on special
classes of BNs (and extended
notions of BNs) for which the general
algorithms either do not work at all,
or will never run efficiently.

The most important special class of
BNs is the hybrid BNs, that include
continuous as well as discrete
variables. The inability to handle
continuous node variables accurately
has been the “Achilles heel” of BN
tools and hence represents the most
important challenge for BN
researchers. Exact inference in BNs
can only be achieved when every
node (with the exception of Gaussian
variables) is discrete. Hence, the
traditional approach to handling
(non-Gaussian) continuous nodes is
static: you have to discretise such
nodes using some predefined range
and intervals. Suppose, for example,
that your BN model includes a node
representing the number of faults
found in a system. Instead of just
specifying that the node ranges from

zero to infinity, you would have to
specify in advance how to break up
this infinite range into a manageable
number of intervals. The more
intervals you define, the more
accuracy you can achieve, but at a
heavy cost of computational
complexity. This approach also
assumes you can identify and
appropriately discretise the high-
density regions for each node in the
model, and do so in advance of any
inference taking place. This is
cumbersome, error prone and highly
inaccurate. See Box 6 for an
example from a real-world problem,
and an indication of how it is being
solved.

Box 6: Handling Continuous Node Variables

In the study [18] software size was measured in KLOC (thousands of lines of code). Typically, the size of a software module
was between 10 and 20 KLOC, but this was by no means consistent. A part of the original BN with statically discretised
nodes is shown in Figure 15. In the model the NPT for the node “Defects found” is defined as a Binomial distribution with
parameters p equal to the probability of finding a defect and n equal to the value of “Defects inserted”. The NPT for the node
“Residual defects” is simply defined by the deterministic function “Defects inserted” minus “Defects found”. 

As with any attempt at discretisation, there was a need to balance the number of states (accuracy) against computational
speed. There was much discussion, agonising and continual refinement of the discretisations. While predictions were
generally reasonable within the “expected” range there were wild inaccuracies for modules whose properties were not typical.
The inaccuracies were inevitably due to discretisation effects. For example, the model cannot distinguish between modules
whose sizes are in the range 50 to 100 KLOC, so a module of size 51 KLOC is treated identically to one of 99 KLOC, and if
we observe say 1501 defects found then the model cannot distinguish such an observation from 1999 defects found. 

Such inaccuracies, as well as the wasted effort over selecting and defining discretisation intervals, are avoided using the
dynamic discretisation described in [41] and implemented in AgenaRisk. Any node that is to be treated as continuous is
simply flagged in the model and the modeller only has to specify a range, such as 0 to 1 for the node “Prob finding defect”
and zero to infinity for the node “Size (KLOC)”. The resulting dynamically discretised model is shown in Figure 16.

Current Challenges

The number of applications of BNs
has been increasing year-on-year
and will continue to explode given
the improvements in tool technology
and the introduction of courses into

many universities worldwide. The
online bibliography [15] shows that,
in addition to the range of
applications discussed above, BNs
have been used in SPAM filtering,

personalisation systems, legal
reasoning, ecology, security and
many other fields. 
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Figure 15: Statically discretised defects model with marginal distributions

Figure 16: Dynamically discretised defects model with marginal distributions
This dynamic discretisation approach allows more accuracy in the regions that matter and incurs less storage requirement
than static discretisations. In the AgenaRisk implementation of the algorithm the user can select the number of iterations
and convergence criteria, and hence can go for arbitrarily high precision (at the expense of increased computation times). 
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It is because of this historical
limitation that even Bayesian
statisticians have shunned BNs for
problems that involve continuous
variables and complex stochastic
models. Instead they have used
tools like the WinBUGS software
package [49], which are based on
intensive sampling algorithms
collectively known as Markov Chain
Monte Carlo (MCMC) methods.
These methods require drawing tens
of thousands of dependent samples
from, usually, high-dimensional
probability distributions. To obtain
reliable results these tools rely on
expert knowledge to calibrate the
tool according to the model and data
set and to monitor the outputs to
ensure the model converges to a
stable solution. 

Fortunately, there have been some
recent breakthroughs in algorithms
for hybrid BNs. Building on the work
of Koslov and Koller [27], Neil et al.
[41] have developed and
implemented a dynamic
discretisation algorithm which works
efficiently for a large class of
continuous distributions. Users of a
tool such as AgenaRisk, which
implements this algorithm, can
simply define continuous nodes by
their range and distribution (see also
Box 5). Without any of the
complexities associated with the
MCMC approach, they can achieve
results of matching or greater
accuracy for many classes of model,
especially for models that include
discrete variables. 

There are, however, a number of
research challenges to be overcome
before the hybrid BN computation
problem is fully resolved. These
include handling inference from large
data sets, handling periodic
functions, dealing with multivariate
situations, discovering maxima in
high resolution problems, handling
autoregressive time series models,
modelling high-dimensional
dependencies (such as copulas),

and, in common with any type of
BN, handling nodes with multiple
parents (see Box 7).

On a wider scale there is
considerable research into how to
model extremely large problems
involving hundreds of data points,
with many variables, over long
periods of time, or involving complex
sequences of variables and data,
such as in biosequences.  A number
of extensions to BNs beyond the
classical inference algorithms are
being used for this purpose,
including:

Relational BNs — These extend BNs
by representing objects, their
attributes, and their relations with
other objects [23]. The standard
approach for inference with a
relational model is based on the
generation of a propositional instance
of the model in the form of a classical
BN, and then applying standard
inference algorithms. Relational BNs
can be used as a means of deriving
and generating BNs given the entity-
attribute structure declared in a
relational database system.

Statistical parameter learning —
Statistical parameter learning is not
often done using BNs because of the
discretisation problem discussed
above (although recent advances
mean that some classes of parameter
learning problem can be meaningfully
solved using BNs).  But Bayesian
statistical analysis, using closed form
or approximate solutions, such as
MCMC, are increasingly popular and
make use of the graphical component
of a BN to explain the
interrelationships between variables in
the model. For an overview of
statistical parameter learning using
Bayesian methods see [19].

Sensitivity analysis — The growth in
the size and complexity of BN models
gives rise to the problem of how best
to assess the sensitivity of a change
one variable might have on another.

This is especially important when
verifying model output against expert
expectations or empirical results. For
example, when making an investment
decision it might be of interest to
assess the sensitivity of financial
returns to a small number of crucial
assumptions. SamIam (see Appendix
2) is a research tool that provides a
variety of sensitivity metrics including
MAP (Maximum a posteriori) and
MPE (Most Probable Explanation) [7].

From the observations above it is
clear that the power and flexibility of
BNs are growing considerably. In
tandem with this growth is their
expansion into different application
areas where they are either
complementing existing techniques
(and in some cases supplanting them)
or providing ways of modelling
complex problems that were
previously thought impossible. Some
example applications where this is
happening include:

Safety and reliability modelling —
Traditionally, the reliability and safety
of complex transport, nuclear and
aviation systems has been assured
through the use of a number of
approximate techniques including
Fault Tree Analysis (FTA), Event Tree
Analysis (ETA), Monte Carlo
simulation and Markov modelling.
Each of these methods uses different
approximate algorithms to model
different aspects of the problem. It
turns out that in all cases these can
either be replaced or subsumed by
BN methods. For example, fault trees
are used to model the probability of
loss events from knowledge of
equipment failures and their
interactions, but increases in the size
of the state space mean that
approximate algebraic methods have
to be used for estimation; fortunately
BNs provide exact solutions to these
problems. See [31][33] for details on
how BNs have been used in event
tree modelling and [32][35] for details
on how BNs can be used to model
fault trees.
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Box 7: Handling Nodes with Multiple Parents

Despite the extensive and continued improvements to BN algorithms, academic BN researchers have tended to ignore
pragmatic solutions to common problems faced by practitioners. An especially common problem involves nodes with multiple
parents.  BN algorithms are generally unable to handle nodes with more than 5 parents efficiently if those nodes have multiple
states. But for continuous variables it ought to be possible to provide sensible solutions. Consider, for example, a model
involving simple addition of several variables – say we have a node “cost” that is defined as the sum of the costs X1,..,X8 of
eight components. Despite its conceptual simplicity, no BN algorithm (static or dynamic) can handle such a model directly.
Instead, users are forced to introduce an artificial factorisation of the BN structure, such as shown in Figure 17.

Clearly the need to do this for such conceptually simple problems is unacceptably laborious and error-prone. Key research
challenges in this respect are therefore (1) to incorporate such optimal factorisations automatically; and (2) to handle
deterministic functions within a BN more efficiently.
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Figure 17: Binary factorisation

Operational risk in finance — As
mentioned earlier, the Basel 2
regulations have forced banks to
consider statistical loss distributions in
financial operational risk scenarios
with a focus on modelling unexpected
loss events such as fraud or large
scale IT failure. The major challenge
banks face in such modelling is the
lack of relevant data – incidents of
major losses due to operational
failures are relatively rare. Hence, the

traditional data-driven approach to
model-building is little use for well-
managed banks; they will have
suffered very few incidents and so
have few data points from which to fit
parametric loss models. BNs help
overcome these hurdles because they
combine qualitative data from experts,
use information about the underlying
processes followed in the organisation
and use relevant quantitative data
available in shared industry-wide

databases. Crucially, given the role of
expertise here, modern BN software
tools can help organisations evaluate
the sensitivity of the models to
different expert assumptions and
different sources of data in order to
argue to the regulator that the
resulting risk model is reasonable and
sufficiently accurate [42].

Recommendation engines and
information retrieval — Increasingly,
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Figure 18: Architecture of typical BN-based recommendation system 

information filtering and retrieval is
used to collect information on user
behaviour (such as when using the
Web, Email, or TV) and to present
relevant information back to the user,
with the aim of providing a filtered list
of relevant items of interest. For
example a TV recommendation
engine would use information about
TV programmes viewed by a user,
produce a model of the user’s
preferences, and then use this to
recommend future TV programmes
that the user might want to watch.
Also, advertisers can target content to
specific consumers directly. BNs and
related Bayesian methods are
increasingly used at the heart of these
recommendation engines. Early

recommendation engine technology
(such as used in the TiVo system,
www.tivo.com) relied heavily on a
technique called collaborative filtering;
this involves identifying groups of like-
minded customers using a
combination of Bayesian data mining
and demographic analysis. New
customers are then assigned to a
group according to how well they fit
the group’s defining characteristics.
Individual customer preferences can
then be inferred and purchasing
recommendations made. This
approach to personalisation is
indirect, but reasonably effective
when it is possible to amass sufficient
data to model an individual consumer
accurately. 

Crucially, modern approaches require
little active involvement by the user.
Instead BNs are used within the
recommendation engine to learn user
preferences statistically and provide
accurate recommendations based on
viewers' passive viewing or listening
habits without the need to ask them
to rate general classes of item. A
typical BN-based architecture (which
is the one encoded in [14]) is shown
in Figure 18.
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Next Steps

Access tutorial
material and case
studies
For introductory and tutorial
material there are a number of
excellent web-based resources. We
recommend the following be read
in order:

• An Intuitive Explanation of
Bayesian Reasoning 
Provides a comprehensive, but
fun introduction to Bayesian
probability, with interactive
content.
http://yudkowsky.net/bayes/
bayes.html

• Making sense of probability:
Fallacies, Myths and Puzzles
Introduces some of the basics of
Bayesian probability via a number
of entertaining examples.
www.dcs.qmw.ac.uk/~norman/
papers/probability_puzzles/
Making_sense_of_probability.html 

• RADAR Tutorial on Bayesian
Networks 
Provides a gentle introduction to
BNs and probability theory, but
also covers a number of more
complex concepts beyond the
scope of this report.
www.dcs.qmul.ac.uk/~norman/
BBNs/BBNs.htm

• Kevin Murphy's Tutorial on
Bayesian Networks
Provides some further material on
more complex topics like
Dynamic BNs, Hybrid BNs and
learning BNs.
www.cs.ubc.ca/~murphyk/Bayes/
bnintro.html

Some BN companies have white
papers, which both introduce the
technology and explain its use in
cases studies. We recommend
www.agenarisk.com (start with the
white paper entitled “Measuring
Risk”)

and

www.cra.com (Charles River
Analytics).

Build models
There is no better way to learn BNs
than by actually building and
running simple example models.
The AgenaRisk tool (See Appendix
2) comes with a comprehensive set
of example models and tutorials in
categories ranging from
introductory to advanced. A fully
functioning (time-limited) version of
the tool can be downloaded for
free from www.agenarisk.com.

A number of models developed by
the Machine Intelligence Group at
Aalborg University are also
available for download at 
http://oldwww.cs.aau.dk/research/
MI/Misc/networks.html.
For an excellent free tool that
learns BNs from data, while
allowing users to specify their own
links and bar others, we
recommend Cheng’s Powersoft
tool (See Appendix 2).

Look at the
bibliography of BN
papers
To find out about BN applications
of particular interest to you, look at
the comprehensive bibliographic
listing [15], available at
www.agenarisk.com/
resources/BN_refs.doc.

Gain an in-depth
understanding of the
algorithms
There is currently no simple
introductory book on BNs (the BN
books that are widely available
require some reasonably in-depth
understanding of probability and
mathematics). For readers who
seek a detailed mathematical
treatment of BNs including

propagation algorithms, the
following books are recommended:

• Jensen, F., Bayesian Networks
and Decision Graphs, Springer,
2001.

• Lauritzen, S. L., Graphical
Models, Clarendon Press, Oxford,
1996.

• Neapolitan, R. E., Learning
Bayesian Networks, Pearson
Prentice Hall, 2004.

• Pearl, J., Probabilistic Reasoning
in Intelligent Systems: Networks
of Plausible Inference, Morgan
Kaufmann Publishers, Inc., San
Francisco, California, 1988.

Attend a conference
There is no dedicated annual
conference on BNs, because the
range of application domains is so
broad. However, there is one
annual conference that has
become the focus for most
academic presentations on BNs,
namely the Uncertainty in Artificial
Intelligence (UAI) Conference. This
conference and its associated
workshops (which normally include
one dedicated to BNs) is organised
by the Association for Uncertainty
in AI. Their website, www.auai.org,
includes information on how to
subscribe to their mailing list.
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Appendix 1: Active Researchers and Practitioner Groups

In the UK
•  Agena: They provide BN model-building consultancy and training.

www.agenarisk.com

•  Durham University: Michael Goldstein and David Wooff use BNs to support software testing.

•  ERA Technology, Safety Engineering Group (SEG): They use BNs for safety and risk assessment and
provide a consultancy service.
www.era.co.uk/Services/networks.asp

•  Institute of Food Research: Led by Gary Barker, they work on BN algorithms, but the main focus is using
BNs for food safety assessment.
www.ifr.ac.uk/science/Partnership/RCS/BBN.html

•  Leeds University: Chris Needham and David Westhead (Institute of Molecular and Cellular Biology) work on
BNs for protein function prediction and classification using uncertainty. 

•  Manchester University, HCI Research Centre: Led by Alistair Sutcliffe, this group uses BNs to predict errors
in complex socio-technical systems.

• Oxford University, Department of Statistics: Steffen Lauritzen undertakes leading-edge research on BN
algorithms and inference.

•  Queen Mary University of London, Risk and Decision Analysis Research Group (RADAR): Norman
Fenton, Martin Neil and William Marsh develop methods for building large-scale BNs, and improved
algorithms for hybrid BNs and dynamic BNs. Main applications are in critical systems risk assessment. 
www.dcs.qmul.ac.uk/research/radar/

•  Queen's University Belfast, Centre for Statistical Science and Operational Research: Led by Adele
Marshall and Ronan Donaghy, they use BNs for a range of patient safety applications.

• QinetiQ: Numerous groups are working on BNs with applications such as capability support, reliability and
availability, vehicle condition monitoring, data fusion and tracking.
www.qinetiq.com 

•  University College London, Department of Statistical Science: Phil Dawid does fundamental work on BN
theory and algorithms and is involved in BN applications to DNA profiling and forensic identification.
www.ucl.ac.uk/~ucak06d/research.html

• University of Edinburgh, School of Mathematics, Statistics Group: Colin Aitken uses BNs for forensic
science and legal reasoning.

Internationally
There are hundreds of research groups internationally doing work on BNs. Below is a selected list with special
emphasis on application-oriented work.

•  Aalborg University, Machine Intelligence Group: Led by Jensen, they do core research on BNs and applied
work in autonomous agents (for example for computer games).
http://oldwww.cs.aau.dk/research/MI/

•  Bayes, Stavanger: Led by Andersen, they provide BN-based consultancy and models for the oil and gas
industry and operational risk in banks, and work closely with the University of Stavanger. 
www.bayes.no

• University of California, Berkeley, Centre for Intelligent Systems: Led by Stuart Russell, they specialise in
learning BNs and BNs for real-time decision-making.
www.eecs.berkeley.edu/CIS/
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•  Microsoft, Decision Theory and Adaptive Systems Group: Key people are Horvitz and Heckerman, with a
focus on learning models from data, BNs for diagnostics and troubleshooting, and intelligent user interfaces. 
http://research.microsoft.com/dtas/

•  Charles River Analytics: They build BN-based solutions for different application domains and offer model-
building consultancy.
www.cra.com

• NASA, Automated Learning Group: Led by Cheeseman and Wolpert, they use BNs for a range of
applications including data analysis.
http://ic.arc.nasa.gov/ic/projects/bayes-group/index.html

•  Seoul National University, Biointelligence Lab, Probabilistic Learning Research Group : Main interests are
in structural BNs and learning large-scale BNs from sparse data. Application areas: text mining and
genomics/proteomics data analysis.
http://bi.snu.ac.kr/

•  Stanford University, Management Science and Engineering: Ross Shachter works on applications of BNs
and influence diagrams to medicine. 
www.stanford.edu/dept/MSandE/people/faculty/shachter/research.html 

•  UCLA, Automated Reasoning Group: Led by Adnan Darwiche, they do work on efficient BN algorithms.
http://reasoning.cs.ucla.edu/   

• University of Alberta, Artificial Intelligence Research Group: Greiner leads work on machine learning BNs.
This is also the home of the Powersoft tool developed by Cheng.  
www.cs.ualberta.ca/~greiner/

•  University of Helsinki, CoSCo (Complex Systems Computation Group): Led by Myllymäki, they work on
both theory and applications of BNs.
http://cosco.hiit.fi/

•  Université de Lausanne, Ecole des Sciences Criminelles: Led by Franco Taroni, they specialise in BNs in
forensic science.
www.unil.ch/esc

•  University of Massachusetts at Amherst, Multi-Agent Systems Lab: Led by Victor Lesser, they use BNs to
help with complex AI problem-solving.
http://dis.cs.umass.edu/

•  University of Pittsburgh, Decision Systems Laboratory: Led by Druzdzel, this is the home of the GeNie &
SMILE library of BN software.  
http://dsl.sis.pitt.edu/

• Universiteit Utrecht, Decision Support Systems: Led by van der Gaag, they research building models with
experts and efficient algorithms. Their key application area is medical decision problems in oncology with
experts from the Netherlands Cancer Institute.
http://www.cs.uu.nl/groups/DSS/ 

•  Monash University, School of Computer Science and Software Engineering, Bayesian Artificial
Intelligence: Led by Korb and Nicholson, they specialise in learning BNs.
www.csse.monash.edu.au/bai/
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Commercial tools
• Agenarisk: From Agena (based in UK), www.agenarisk.com

• BayesLab: From Bayesia (based in France), www.bayesia.com

• Bayesware Discoverer: From Bayesware (based in UK), www.bayesware.com

• BNet: From Charles River Analytics (based in USA), www.cra.com/bnet 

• Hugin: From Hugin A/S (based in Denmark), www.hugin.com

• Netica: From Norsys (based in Canada), www.norsys.com

• SIAM & Causeway: From SAIC (based in USA), www.inet.saic.com

Free and open source tools
• GeNIe & SMILE: http://genie.sis.pitt.edu

• Microsoft MSBNx Bayesian Network Editor and Tool Kit: http://research.microsoft.com/adapt/MSBNx/

• OpenBayes: www.openbayes.org

• RISO: http://sourceforge.net/projects/riso/ 

• SamIam: http://reasoning.cs.ucla.edu/samiam

• Powersoft: www.cs.ualberta.ca/~jcheng/bnsoft.htm

Appendix 2: BN Tools
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